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Measurements are reported of the pressure differences ∆P existing at large distances
above and below a ball settling along the axis of a circular cylinder filled with an
otherwise quiescent viscous Newtonian liquid in which identical particles, comparable
in size to the settling ball, are suspended. The suspensions ranged in solids volume
fraction φ from 0±30 to 0±50 and consisted of 0±635 cm diameter spheres density-
matched to the suspending oil. The settling balls varied in diameter from 0±318 to
1±27 cm, resulting in particle Reynolds numbers always less than about 0±4 based upon
ball diameter and the effective viscosity of the suspension. For the moderately
concentrated suspension (φ¯ 0±30), the product of ∆P with the cross-sectional area A
of the containing cylinder was observed to be equal to twice the drag force D on the
settling sphere, in accord with theory. In the more concentrated suspension (φ¯ 0±50)
this product was found to be slightly, but significantly, less than twice the drag on the
settling sphere. It is speculated that this lower pressure drop may result from the
presence of one or more of the following phenomena: (i) migration of the falling ball
off the cylinder axis ; (ii) apparent slip of the suspension at the cylinder wall ; (iii)
blunting of the otherwise Poiseuillian parabolic velocity profile, the latter phenomenon
being known to occur during the creeping flow of concentrated suspensions through
circular tubes. Incidental to the suspension experiments, for a homogeneous fluid we
verify the classical theoretical formula for the off-axis pressure drop when the sphere
settles at a non-concentric position in the cylinder.

1. Introduction

The dynamic pressure difference ∆P existing between any two planes situated at
large distances above and below a spherical particle settling slowly along the axis of a
long circular tube filled with a homogeneous static viscous liquid has been the subject
of several theoretical and experimental investigations. In this study we compare these
‘single-phase’ pressure drop results with our measurements for suspensions of
neutrally buoyant spheres.

The Stokes (Brenner & Happel 1958; Brenner 1959) and Oseen (Brenner 1962)
equations predict that

∆PA¯ 2D, (1)

for a relatively small particle settling along the axis of a circular tube of radius R
!
,

where A¯πR#

!
is the cross-sectional area of the cylinder (R

!
¯ 7±16 cm in the present

study). This theoretical prediction has been verified experimentally for rigid spherical
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particles falling along the axes of cylinders filled with Newtonian liquids; the relation
holds for Reynolds number Re! 125 (Pliskin & Brenner 1963; Feldman & Brenner
1968), where Re¯ 2aUρ}µ (a is the falling ball radius, U the terminal settling velocity,
ρ the fluid density, and µ the viscosity). When a}R

!
is not small compared with unity,

the ball experiences a wall effect, and (1) (in creeping flow) requires modification such
that the pressure drop}drag force coefficient

C
P

3∆PA}D (2)

takes the form (Pliskin & Brenner 1963)

C
P

¯ 2 91®
2

3 0
a

R
!

1#:O 0 a

R
!

1$. (3)

Again for creeping flow, Brenner & Happel (1958), Brenner (1962), and Bungay &
Brenner (1973) theoretically investigated the effects of the tube wall for non-axial
settling, where the ball is positioned eccentrically in the tube. In this case

C
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!
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R
!

1$, (4)

where b is the distance of the sphere centre from the cylinder axis.
The corresponding axial fall pressure differences occurring for (single-phase) non-

Newtonian fluids were studied numerically by Zheng, Phan-Thien & Tanner (1991)
and experimentally by Ribeiro, Vargas & Frota (1994). The numerical results yielded
C

P
¯ 2±016 after correcting for wall effects (equation (2)) for the Newtonian Stokes

flow case, and predicted a slight increase with the onset of both inertial and non-
Newtonian effects, as represented by the Reynolds and Weissenberg (Wi) numbers.
However, at zero Re the increase was not great over the range of parameters studied;
C

P
increased less than 10% as Wi increased from 0 to 1. For an inelastic shear-thinning

fluid (a Carreau model with a power-law index of 0±38 and a time constant that varied
from 0 to 10) at zero Re, they also predicted C

P
to be somewhat higher than 2. Ribeiro

et al. (1994) argued that the effect of shear thinning should be to decrease C
P

(significantly for a power-law index of 0±38, the value used by Zheng et al. (1991)),
basing this argument on the analysis by Brenner (1962) together with the expected
velocity profile for axial flow between concentric cylinders. Ribeiro et al. (1994)
suggested that the inner cylinder could be taken as representing the falling ball. The
experiments of the latter group performed with an elastic shear-thinning fluid, namely
a solution of a polyacrylic acid in glycerol with a power-law index (1}s) of 0±874,
resulted in a measured C

P
of 1±95³0±05. This was close to their theoretically predicted

value of C
P

¯ (s3)}(s1)¯ 1±93 for a fluid with a power-law index of 0±874, as well
as to the Newtonian value for C

P
(even if uncorrected for the effects of the non-zero

a}R
!
). With viscoelastic and shear-thinning solutions corresponding to two concentra-

tions of polyacrylamide in water, the experimental results showed C
P

to be about 2±0
at lower values of Re and Wi, increasing to approximately 2±3 at the highest values
studied. This C

P
ratio was much higher than they predicted theoretically. However, a

third solution, entailing the highest concentration of polyacrylamide employed
(10% p.p.m. by weight), yielded a significantly lower value of C

P
(near 1±5 at the same

conditions that yielded C
P

E 2 for the other solutions), a value close to their predicted
value for small Re and Wi.

It is interesting to note that the discrepancy between (1) and the comparable relation
∆PA¯D (that would obtain for a laterally ‘unbounded’ fluid or in a cylinder with
perfect ‘slip ’ at the walls) derives from the existence of a finite shearing force on the
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vertical walls of the cylinder, even when these walls are effectively infinitely far from
the particle, i.e. a}R

!
U 0 (Brenner 1962). This shearing force arises from a reverse flow

near the walls, compensating for the fluid dragged along by the particle. It is also
interesting to note that when the particle has reached its terminal settling velocity in a
Newtonian liquid, ∆P does not depend on the fluid viscosity, but only on the drag force
D¯mg, where m is the mass of the particle corrected for buoyancy and g is the
acceleration due to gravity. This fact, coupled with the relatively weak dependence of
∆P on any non-Newtonian behaviour, suggests that the C

P
ratio measured for a ball

falling through a suspension may be insensitive to the volume fraction of suspended
solids (which changes the suspension’s apparent viscosity), provided that the presence
of the suspended particles does not create any apparent suspension-scale slip at the
tube wall.

Such a weak effect would be consistent with the findings of Mondy, Ingber &
Dingman (1991), who calculated numerically the pressure drop across spheres falling
in relatively dilute (φ% 0±05) suspensions of similarly sized spheres dispersed in a
Newtonian liquid. In these simulations, the pressure drop was influenced only weakly
by the presence of these neutrally buoyant particles. The arrangement of the suspended
particles also had a negligible effect on the pressure drop. In contrast to ∆P, however,
the apparent viscosity of the suspension (as measured by the terminal velocity of the
same falling balls) was observed to be very sensitive to both particle arrangement and
concentration.

The present work constitutes an attempt to confirm the applicability of (1) for the
case of a ball falling slowly through a suspension of neutrally buoyant spheres in a
viscous Newtonian liquid. The suspended particles (radii a

s
¯ 0±318 cm) were similar

in size to the falling balls (radii a ranging from 0±159 to 0±635 cm). Under similar
circumstances, Mondy, Graham & Jensen (1986) measured the terminal velocities of
the falling balls and, hence, via Stokes law, the suspension’s apparent viscosity. They
observed the (distance}time) averaged velocity of a ball to be consistent with that for
a hypothetical homogeneous Newtonian liquid, including theoretical wall effect
corrections over the range of a}R

!
values encountered in the present study. However,

they also observed that the ball’s instantaneous velocity could vary dramatically as the
ball interacted locally with the suspended particles in its neighbourhood, the velocity
depending inter alia on how close the ball was to a suspended particle or group of
particles at that instant. Abbott (1993) later investigated the fluctuations in ball
velocity in more detail, quantifying them statistically by a dimensionless pair of Taylor
dispersivities (longitudinal and transverse to the cylinder axis) dependent upon a}a

s

and φ. In general, these dispersivities increased with increasing φ and decreased with
increasing a}a

s
. This existence of a transverse component of the dispersivity dyadic

implies that the ball can drift off the centre of the cylinder axis, potentially altering its
instantaneous b}R

!
value appearing in (4) during its fall. Our goal was to investigate

whether or not the discrete nature of the suspensions influenced the pressure drop
coefficient C

P
, in comparison with a truly homogeneous fluid continuum characterized

by comparable physical properties.
In an interesting study, Poletto & Joseph (1995) have investigated the motion of balls

falling through suspensions of non-neutrally buoyant particles undergoing sedi-
mentation or fluidization. The emphasis in their study was on the effective viscosity and
effective buoyancy forces encountered by a ball during its motion through the
sedimenting or fluidized suspension. In contrast, our work is concerned only with
neutrally buoyant suspensions. Moreover, the effective viscosity does not enter
explicitly into our study, nor does the question of suspension-scale buoyancy force
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arise, except insofar as the fact that steady-state drag D on the ball is necessarily equal
to the weight of the ball corrected for buoyancy. However, because the suspended
particles and fluid have the same density in our experiments, there can be no issue as
to what is the proper suspension-scale buoyancy force to use in calculating D.

The next section describes the equipment and experimental protocols. In the
following section we present results, including an analysis of the possible influence of
the falling ball’s transverse trajectory on the wall effects. The final section offers a
summary and brief discussion of the results.

2. Equipment and experimental procedure

Figure 1 provides a sketch of the experimental apparatus. It consisted of five main
parts : (i) glass column with an inside diameter of 14±32 cm (R

!
¯ 7±16 cm) connected

near its base to a 3±81 cm diameter side column; (ii) a pressure transducer between the
two columns; (iii) a temperature control system; (iv) an electromagnetic ball release at
the top of the larger column; and (v) a data acquisition system.

The larger column was filled with the test liquid, either the suspending Newtonian
oil alone or a suspension with a solids volume fraction of 0±30 or 0±50. The suspending
fluid consisted of a mixture of 50±27% by weight of Triton X-100 (an alkylaryl
polyether alcohol from J. T. Baker), 35±66% by weight of UCON oil (H-90000, a
polyalkylene glycol made by Union Carbide), and 14±07% by weight of a solution of
practical grade 1,1,2,2 tetrabromoethane (from Eastman Kodak) together with a small
amount (about 0±1% of the weight of the tetrabromoethane) of Tinuvin 328 (an
antioxidant made by Ciba-Giegy). This composition was chosen to match the density
of the polymethyl methacrylate suspended spheres at the operating temperature
(17±90 °C). It also has the advantage of being transparent because the index of
refraction of the liquid is close to that of the suspended particles. The suspending liquid
viscosity at this temperature is 6±5 Pa s, and has been shown previously (Abbott et al.
1991) to exhibit no shear-rate dependence or normal stresses at the shear rates
encountered in the experiments. The suspended particles consisted of individually
ground, uniform spheres of radius 0±318 cm obtained from Clifton Plastics (Clifton
Heights, PA). Prior to dropping each ball the suspensions were well mixed (by hand)
in the large cylinder to ensure that the suspended particles were uniformly dispersed.

The smaller column was filled with only the suspending Newtonian oil, and the two
glass columns were connected near the bottom via a glass neck containing a small
screen that prevented suspended particles from migrating between columns. This
prevented any uncertainty in the initial volume fraction of solids in the test suspension
(it was not possible to adequately mix the suspension in the small diameter cylinder).
Balls were dropped in the larger cylinder, with the smaller column serving to balance
the hydrostatic pressure, thereby enabling the minuscule differential pressures existing
across the falling ball to be measured accurately. Above the liquid level in each cylinder
was an air space, about 5 cm in height. Each column was capped with an airtight seal ;
a tube connected the air space of each cylinder to the two pressure ports of the
differential pressure transducer, as well as to a bypass valve open to the atmosphere.

During an experiment the bypass valve was closed, and the two cylinders sealed off
from the atmosphere. An MKS 398 differential high-accuracy pressure transducer
(Andover, MA) was used to measure the pressure difference between the respective air
spaces in the two cylinders. The manufacturer claimed this gauge to have a maximum
error of ³0±05% of the transducer reading down to extremely low pressures. However,
the instrument was only factory calibrated down to 1±333 Pa. Because we expected
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F 1. Sketch of experimental apparatus.

significantly lower pressure differences with the smallest balls, to test the accuracy of
the present apparatus we first performed experiments on the pure suspending liquid
(for which the theoretical results had already been experimentally verified by Pliskin &
Brenner (1963)).

Our approach to measuring the differential pressure using two communicating
cylinders was based on the earlier experiments of Pliskin & Brenner (1963). However,
as discussed by these authors, this design has the disadvantage of rendering the
measurements susceptible to small temperature variations. To mitigate any such
effects, we placed both cylinders in a large water bath through which coolant water was
recirculated by a Brinkmann RC20 temperature controller (Brinkmann Instruments,
Westbury, NY). Bath temperature was maintained constant to within 0±01 °C.
However, stirring the suspension was observed to create a small temperature rise in the
suspension. Concern also existed that introduction of the falling ball could also change
the temperature, albeit slightly. Therefore, after introduction of the falling ball – but
before releasing it – the suspension was allowed to stabilize (usually between 30 and 60
minutes) until the differential pressure between the two cylinders no longer changed.

The balls dropped were magnetic, either steel or tungsten carbide, with nominal
densities of 7±8 and 15 g cm−$, respectively. Each ball was carefully weighed to
determine its mass m to ³0±0002 g and its diameter 2a to ³0±0001 cm. The local
acceleration due to gravity g was determined in a nearby building with a LaCosste &
Romberg Model D gravity meter to within an accuracy better than 1 milligal (Gannett
Fleming West, Inc. 1995). Finally, the density ρ of the liquid was measured with a Parr
Calculating Digital Density Meter DMA45 (Anton Paar, Graz, Austria) to be
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F 2. Example pressure trace for a 0±159 cm radius tungsten carbide ball falling in (a) the (single-
phase) suspending liquid, (b) a suspension of 0±318 cm radius neutrally buoyant spheres (volume
fraction¯ 0±50).

1±1812³0±0003 at the operating temperature. Therefore, the product (m®(4}3)πa$ρ)
g¯D was known to a high degree of accuracy. Seven ball sizes were used, with
nominal radii ranging from 0±1588 to 0±6350 cm in increments of 0±0794 cm (0±02!
a}R

!
! 0±08). With use of an electromagnet connected to the cap that sealed the top

of the larger cylinder, the balls were held partially submerged in the liquid. The
electromagnet was situated in the centre of the cylinder for the initial experiments.
Later experiments were performed in the Newtonian oil solely for the purpose of
verifying (3). During such studies, the electromagnet was held at a known distance b
from the axis ranging from b}R

!
¯ 0±11 to 0±75.

After the initial differential pressure appeared to stabilize, the electromagnet was
turned off, the ball released, and the voltage signal from the differential pressure
transducer continuously recorded (by an IBM PC equipped with analog-to-digital data
acquisition capabilities) until the settling ball reached the cylinder bottom. The data
were then transferred to a more powerful computer for analysis.

Typical pressure traces (figures 2a and 2b) exhibited a sharp rise as the ball was
released, an overshoot, a steady pressure reading as the ball traversed most of the
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cylinder, and then a somewhat slower decline as the ball settled on the bottom. The ball
was visually monitored during an experiment, and the time interval noted during which
the ball was present in the centre third of the cylinder. Data recorded during this
interval were used to obtain the average maximum pressure. This average was observed
to be relatively insensitive to the number of data points taken as well as to the exact
beginning and ending point chosen; nevertheless, we tried to be consistent across all
experiments. The average static pressure registered shortly after the ball reached the
bottom and ceased moving was used as the ‘zero’ reading, and subtracted from the
average maximum pressure in order to obtain the differential pressure of interest. The
pressure at the end of the experiment rather than at the beginning was taken as the
baseline due to the fact the ball was usually not fully submerged at the beginning of a
test (in order to facilitate its release from the magnet).

3. Results

At the outset, the apparatus was tested by measuring the pressure differences
attending the settling balls falling in the homogeneous suspending fluid from which
suspended particles were absent. Figure 2(a) is an example of the pressure trace for a
0±159 cm radius tungsten carbide ball. Ten balls were dropped for each of the seven
nominal sizes, the average C

P
value for each ball size being plotted in figure 3. At these

a}R
!
ratios the maximum value of the wall correction term is less than 0±005. (In other

words, C
P

for the largest ball is predicted to be 1±99 rather than 2±00, according to (3).)
The 95% confidence limits (Namely tS}n"/#, where S is the standard deviation of the
measurements, n¯ 10 the number of measurements, and t¯ 2±626 from standard
statistical tables) are included for each point. The smallest ball gives rise to the largest
uncertainty, as expected when measuring the extremely small pressures differences
involved (approximately 0±3 Pa). In addition, the smallest balls took significantly
longer to fall ; and the longer the experiment, the more likely that small temperature
variations could lead to spurious pressure measurements. Nevertheless, the average of
the data points for each nominal ball size is close to the expected value. Moroever, the
average of all seven values of C

P
is 2±018, within 1% of the theoretical value.

Figure 2(b) shows a typical pressure trace for a 0±159 cm radius tungsten carbide ball
falling through the φ¯ 0±50 suspension. The pressure response for the suspensions
displayed more short-time fluctuations than observed in the homogeneous fluid,
presumably due to the interactions of the falling ball with the suspended spheres. This
can be seen by comparing figures 2(a) and 2(b).

Pressure-drop-coefficient data taken in the suspensions with solids volume fractions
of 0±30 and 0±50 are shown in figures 4(a) and 4(b), respectively. The concomitant
increase in apparent viscosity caused the settling time for a ball to increase as the
concentration of suspended particles increased. Compared with the suspending liquid
alone, this resulted in the measurements taking over 10 times longer in the most
concentrated suspension. And, as noted above, these relatively long experiments were
particularly susceptible to temperature variations. Therefore, it is not surprising that
the confidence limits increase with increasing solids concentration.

For the φ¯ 0±30 suspension the average of all seven C
P

values was 2±001, very
similar to the results obtained for the homogeneous Newtonian oil. In contrast,
however, the average C

P
value obtained for the φ¯ 0±50 suspension was 1±803. There

appears to be no discernible effect on C
P

of the relative ball}suspended-sphere size,
a}a

s
; thus, a ball half the size of the suspended particles yielded the same pressure drop

force}drag ratio as one with a diameter twice that of the suspended particles.
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F 3. C
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values (equation (2)) measured in the (single-phase) suspending liquid for various
falling ball sizes relative to the containing cylinder.

During the suspension experiments, the falling ball was sometimes observed to
wander from its axial position within the cylinder. As evidenced by (4), the expected
wall effects for a Newtonian liquid vary with the distance b. We have no reason to
doubt that they would also do so were the fluid a suspension. Off-axis wandering of the
ball can therefore have two effects. First, because each ball traces a different path
through the cylinder, each could experience, on average, a different wall effect. This
phenomenon could contribute to the spread in values of the pressure drop
measurements and, hence, to the magnitude of the experimental uncertainty.
Furthermore, as can be seen from (4), a non-axially-positioned ball will, according to
the theory for a homogeneous fluid, always manifest a smaller C

P
ratio than one

situated on the axis. As such, the average C
P

value measured in suspensions where the
ball spent an appreciable proportion of time away from the cylinder axis could be
significantly less than for a homogeneous liquid where the ball remained permanently
along the axis.

In order to estimate the effect of the ball’s migration, we first verified (4) for a
homogeneous Newtonian liquid. Several tungsten carbide balls with a nominal radius
of 0±3175 cm were dropped at seven non-axial locations in the cylinder filled with the
Newtonian suspending liquid. Steel balls, each of a nominal radius of 0±635 cm, were
also dropped at five of those locations. The measured C

P
values are shown in figure 5

and compared with the values predicted from (4). Experiment and theory clearly agree
quite closely.

Balls falling through a suspension will generally wander too far and erratically to
verify (4). However, we have precedent to believe that the effects would be close to
those in a single-phase Newtonian liquid. The effects of the cylinder walls on the
velocity of a falling ball have been studied for various relative sizes of falling balls,
suspended particles, and containing cylinders, and have been shown to be the same in
suspensions of spheres and rods as those in a Newtonian liquid over an appreciable
range of these parameters (Mondy et al. 1986; Milliken et al. 1989a, b).

Estimates of the effects of the falling ball’s possible lateral migration were effected
by combining earlier measurements of the horizontal and vertical dispersivities of
falling balls (Abbott 1993) with a computational algorithm so as to model the pressure
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F 4. C
P

values (equation (2)) measured in (a) the φ¯ 0±30 suspension and (b) the φ¯ 0±50
suspension for various falling ball sizes relative to the containing cylinder. The solid line represents
the C

P
values predicted by an algorithm that accounts for the migration of the falling ball away from

the cylinder axis.

drop. These dispersivities were measured under the same experimental conditions as in
the present laboratory experiments, except that the suspended spheres were half the
size. Two methods were used to estimate the mean displacement off the centreline, as
the falling ball passed the column’s midpoint. The first method used the equation

b¯ (D
h
l}�)"/#, (5)

where D
h

is the horizontal dispersivity correctly scaled for the relative sizes of the
suspended spheres and falling ball (Abbott 1993), l is the length of the cylinder, and �
is the average settling velocity. This method neglects any interaction between the
vertical and horizontal dispersivities. The second method used an algorithm that
calculated the ball’s path as a random walk, assuming the ball’s motion to be governed
by Gaussian distributions. The mean vertical displacement was assumed to be the
average settling velocity of the falling ball multiplied by a constant time step. The mean
horizontal displacement was assumed to be zero. Finally, the variances of the Gaussian
distributions were set to be twice the respective (experimentally derived) dispersivities
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values (equation (2)) for balls falling non-concentrically in the (single-phase)
suspending liquid a distance b from the containing cylinder (radius R

!
) axis. The dashed lines

represent the C
P

values predicted by equation (4).

multiplied by the constant time step. Each ball was released at the centreline of the
column and allowed to settle until it had traversed more than half the column height.
Results obtained by repeating this experiment 20 times and averaging the mean off-
centre distance at half the column height were, within error limits, indistinguishable
from those obtained by the simpler method embodied in (5). Using the value of b
obtained from the latter equation, (4) was used to determine the pressure drop
appropriate to a homogeneous Newtonian fluid.

Mean values of C
P

corrected for the falling balls’ migration as predicted by our
algorithm (as a function of the ball size) are shown as the lines in figures 4(a) and 4(b).
Although migration of the ball away from the cylinder axis does lower the predicted
value of C

P
, and although the experimental uncertainties in the measured pressure

drop are in most cases large enough to accommodate the prediction, the migration of
the ball may not fully account for the lower value of C

P
seen in the φ¯ 0±50

suspension. In fact, at least one data point in figure 4(b) is too low to match the
predicted C

P
value.

4. Discussion and conclusions

The pressure drop across a ball falling in a moderately concentrated suspension (φ¯
0±30) matched that expected for a homogeneous Newtonian fluid. The ratio C

p
of the

measured pressure drop force (the pressure drop ∆P multiplied by the cross-sectional
area A of the containing cylinder) to the drag force D on the ball was found to be close
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to the theoretical value of 2±0. The size of the ball relative to that of the suspended
particles had little effect, if any, over the range of parameters (0±5! a}a

s
! 2)

encountered in our study for both this suspension and the more concentrated one. It
is interesting to note that in earlier studies the drag on a ball falling through a
suspension of like spheres could be very sensitive to the relative ball}suspended-sphere
size, a}a

s
, decreasing dramatically as a}a

s
decreased below 0±8 at φ¯ 0±50 (Milliken et

al. 1989b). In contrast, under similar conditions the pressure drop is seemingly
independent of a}a

s
(as well as of the apparent viscosity).

However, the uncertainties in the pressure measurements in the suspensions were
larger than those observed in the comparable homogeneous particle-free suspending
Newtonian oil case. A combination of effects was likely to cause these larger
uncertainties. First, the measured pressure difference fluctuates more extensively
during an experiment performed with a suspension than it does with the suspending
liquid alone. These pressure fluctuations appear to originate from the discrete nature
of the suspension, which also causes the ball to follow a seemingly erratic path with
frequent excursions in instantaneous velocity that are obvious to the observer. The ball
may also wander a considerable distance from the cylinder centre. (The smallest balls
migrated up to 40% of the distance to the cylinder wall in the highest volume fraction
suspension.) Because each ball followed a different path, the average wall effects varied
from one experiment to the next, increasing the spread in the measured pressure drop.
Finally, because the apparent viscosities are much higher in the suspensions than in the
homogeneous fluid, the ball takes a much longer time to traverse the apparatus. This
increases the probability of errors arising from temperature fluctuations.

The mean pressure drop was somewhat lower in the more concentrated of the two
suspensions; however, the uncertainties in the measurements are so large that the result
from only one ball size (a¯ 0±159 cm) can be statistically proven to differ from that
expected in a Newtonian liquid. Nevertheless, the mean C

P
value for each ball size was

consistently lower than 2±0, hovering around 1±8. This can only be partially explained
by off-axis migration of the ball. As part of this study we verified the accuracy of the
predictions (Brenner & Happel 1958; Brenner 1962; Bungay & Brenner 1973) of the
effects on C

P
of non-axial settling (b}R

!
1 0) in homogeneous fluids.

Concentrated suspensions of spheres dispersed in Newtonian liquids may exhibit
apparent shear thinning in a conventional rheometer (Krieger 1972; Gadala-Maria
1979). As such, it could be argued that the lower C

P
values observed were consistent

with the Ribeiro et al. (1994) conjecture that this ratio is lower for shear-thinning than
Newtonian liquids. However, apparent shear thinning was detected in none of the
previous experiments wherein the suspension’s apparent viscosity was measured via
falling-ball rheometry under conditions virtually identical to those in the present
experiments (Mondy et al. 1986; Abbott 1993). These facts lead us to speculate that the
lower-than-expected pressure drops observed in the suspensions tested (and, perhaps
too, in Ribeiro et al.’s (1994) most concentrated polyacrylamide solution) were caused
by suspension-scale ‘slip ’ at the cylinder wall or from a blunting of the non-Newtonian
velocity profile arising from the presence of suspended particles.

By measuring the velocities of the suspended particles in tube flow, Karnis,
Goldsmith & Mason (1966) observed slip in suspensions. Similar observations have
been reported for Couette flow between rotating concentric cylinders (Jana, Kapoor &
Acrivos 1995), in addition to having been inferred in a host of other studies (for
example, Vand 1948a,b ; Higginbotham, Oliver & Ward 1958; Seshadri & Sutera 1970;
Yoshimura & Prud’homme 1988; Yilmazer & Kalyon 1989; Boersma et al. 1991).
Apparent slip at the wall in suspensions is believed to occur because the finite size of
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the suspended particles leads to the existence of a thin layer near the wall characterized
by a smaller solids concentration than in the bulk and, hence, possessing a lower
apparent viscosity than the average. (This phenomenon is sometimes called the Vaud
effect.) Recent studies have shown that the particles in concentrated suspensions can
migrate away from walls in channel or tube flow, even at very low Reynolds numbers
(Leighton & Acrivos 1987; Phillips et al. 1992; Koh, Hookham & Leal 1994; Nott &
Bray 1995; Hampton 1996). Such migration can intensify the apparent slip effect, but
can also complicate the detection of effect due solely to steric exclusion.

Apparent slip accompanying laminar flow has also been documented in the polymer
solution and melt literature, and has been speculated to be caused by depletion of
polymer molecules in the wall region (for example, Mooney 1931; Kozicki et al. 1970;
Carreau, Bui & Leroux 1979; Cohen & Metzner 1985). Cohen & Metzner (1985) saw
slip effects even in large channels (channel size}macromolecular size" 100) with
solutions of polyacrylamide.

The pressure drop across a ball falling through a liquid bounded by a cylinder is
crucially dependent on the slip}stick boundary condition at the cylinder walls (Brenner
1962). For perfect slip the C

P
ratio is 1±0, whereas it is 2±0 with perfect stick. In effect,

with perfect slip the wall experiences no shearing force. (In contrast the drag on the
falling ball is modified by the presence of the no-slip boundary condition at the cylinder
wall only by the Faxe!n wall correction (Faxe!n 1923; Bohlin 1960), which in the present
geometry is reasonably small.) Therefore, because of sensitivity to slip, pressure drop
measurements for a ball falling in a quiescent suspension (or even in a polymer
solution) may provide an attractive means of quantifying the effects of steric exclusion
of the particles (or macro-molecules) near the walls, without the added complexities
arising from the formation of shear-induced ‘slip ’ layers accompanying net flow of the
material.

An alternative explanation of the lower-than-expected pressure drop may be the
blunting of the otherwise Poiseuillian parabolic velocity profile, observed to occur
during the laminar flow of concentrated suspensions in tubes (Karnis et al. 1966). For
circumstances other than the homogeneous Newtonian-fluid circular-tube case, the
generic expression for the pressure-drop coefficient defined in equation (2) is (Brenner
1962)

C
P

¯ �!
!
}V

m
(6)

where �!
!
is the approach velocity of the suspension to the point (situated at the axial

position b) where the centre of the falling ball is located, when the neutrally buoyant
suspension flows through the duct with mean velocity V

m
. It is this generic relation that

leads to equation (4) for the Poiseuille flow case (at least in the absence of wall effects,
a}R

!
¯ 0) as well as to the power-law flow expression, C

P
¯ (s3)}(s1), of Ribeiro

et al. (1994) for the concentric sphere location case, b¯ 0, cited earlier. The blunting
of the Poiseuille velocity profile revealed by the experiments of Karnis et al. (1966) on
the flow of concentrated suspensions corresponds to an axially situated sphere value of
�!
!
}V

m
! 2±0. This inequality is consistent with our experimentally observed value of

C
P

E 1±8 for the 50% suspension case, although the experimental values reported
by Karnis et al. (1966) for the ratio u«(0)}V

m
at their highest concentration of

34 volume % (with u«(0) the centreline velocity of the plug flow) would suggest a
significantly smaller value than 1±8, namely 1±5–1±6 at their 34 volume % concentration.
If the latter interpretation is correct, then experimental measurements of C

P
¯∆PA}D

in quiescent suspensions at various fractionally eccentric sphere positions b}R
!

may
provide an alternative scheme for establishing the velocity profile in concentrated
suspensions of neutrally buoyant particles.
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